
Modeling Dependencies of Loci with String
Classification According to Fitness Differences

Miwako Tsuji, Masaharu Munetomo, and Kiyoshi Akama

Hokkaido University, North 11, West 5, Sapporo, 060-0811 Japan.
{m tsuji,munetomo,akama}@cims.hokudai.ac.jp

Abstract. Genetic Algorithms perform crossovers effectively when we
can identify a set of loci tightly linked to form a building block. Several
methods have been proposed to detect such linkage. Linkage identifi-
cation methods investigate fitness differences by perturbations of gene
values and EDAs estimate the distribution of promising strings. In this
paper, we propose a novel approach combining both of them, which de-
tects dependencies of loci by estimating the distribution of strings clas-
sified according to fitness differences. The proposed algorithm called the
Dependency Detection for Distribution Derived from df (DDDDD or
D5) can detect dependencies of a problem which is difficult for EDAs
requiring lower computation cost than linkage identifications.

1 Introduction

According to the building block hypothesis [6], genetic algorithms (GAs) im-
plicitly decompose a problem into sub-problems by processing building blocks.
Therefore proper building block mixing is essential for GAs. However, the ex-
change operators of traditional GAs such as one- or two- point crossovers depend
on the order of variables on a string. If variables of a same sub-problem are en-
coded loosely on a string, the crossover operators disrupt building blocks —
tight linkage is necessary for effective genetic recombination. A set of loci tightly
linked to form a building block is called a linkage set. If such set of loci is known,
GA can perform mixing more efficiently.

In order to ensure appropriate mixing, several methods have been proposed.
Most of them are categorized as:

1. Linkage Identification Methods
2. Estimation of Distribution Algorithms (EDAs)

The Algorithms classified in the first category examine fitness difference by
perturbations in loci to detect dependency. For example, the Gene Expression
Messy GA (GEMGA) [7] records fitness differences by perturbation of every locus
for strings in population and detects relations of genes according to possibilities
that the loci construct local optima. The Linkage Identification by Nonlinearity
Check (LINC) [11] identifies linkage by detecting the second order nonlinearity.
It assumes that nonlinearity must exist within loci to form a building block. If
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a fitness difference by simultaneous perturbations at a pair of loci is equal to
the sum of fitness differences by perturbations at each locus in the pair, these
loci can be optimized separately; otherwise, they are considered to be linked.
Heckendorn et. al. [5] generalized this category through a Walsh analysis.

In these algorithms, the amount of fitness difference depends only on a sub-
problem including the perturbed locus and contributions from the other sub-
solutions are canceled by subtracting fitness of perturbed string from fitness
of original string. Therefore their abilities are not affected by the difference of
fitness contribution of each sub-solutions. In addition, they get to know problem
structure before they start searching, and so their search procedures themselves
are generally efficient. However, because most of them need to evaluate fitness
differences by pairwise or more perturbations, they require O(l2) or more fitness
evaluations where l is a string length.

For the second category, EDAs construct a probabilistic model of promising
solutions and use that model to generate better solutions. Early EDAs such as the
Population Based Incremental Learning Algorithm (PBIL) [14] and the Compact
Genetic Algorithm (CGA) [4], evaluate distribution of gene value in every locus
independently and assume no dependency of variables. Subsequent works such
as the Mutual Information Maximization for Input Clustering (MIMIC) [1], the
Factorized Distribution Algorithm (FDA) [8] and the Bayesian Optimization
Algorithm (BOA) [13] exploit conditional probabilities to encode dependency of
variables in their models.

Because EDAs need no additional fitness evaluation for their modeling pro-
cesses, the computational cost for fitness evaluations on problems constructed
of sub-problems having uniformly scaled fitness contribution is lower than the
methods in the first category. However, for problems constructed of sub-problems
having various fitness contribution, sub-problems which give small fitness con-
tribution can not be modeled appropriately. This is because such sub-problems
can be selected in promising sub-population only if they come with sub-problems
with large fitness contribution.

In this paper, we propose a novel approach hinted from both EDAs and
linkage identifications in order to detect dependencies. The proposed approach
can detect dependencies of problems which are difficult for EDAs with less com-
putational cost than linkage identifications. Although the proposed approach
estimates sub-population like EDAs, the sub-population is selected according to
fitness differences by perturbations instead of absolute fitness values. Because the
fitness difference depend only on a sub-problem including the perturbed locus,
distribution of the sub-population has information of the sub-problem. Just as
linkage identifications using perturbations are not greatly affected by the scaling
of fitness contribution of each sub-function, the proposed approach can detect
sub-solutions even if they give a small contribution to the whole fitness value.
The proposed approach can detect dependencies accurately by quasi-linear num-
ber of fitness evaluations for string length.

We introduce our new method called the Dependency Detection for Distri-
bution Derived from df (DDDDD or D5) and its mechanism is explained in
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Fig. 2. Strings selected for modeling in D5

section 2. The results of experiment are shown in section 3. The conclusion and
discussion are mentioned in section 4.

2 Modeling Dependencies from Distributions of Strings
Classified According to Fitness Differences

Existing EDAs sometimes fail to learn models for sub-problems having little con-
tribution to overall fitness value. This is because they estimate sub-population
selected according to the overall fitness value (Fig. 1) and such small contri-
butions can not affect the overall fitness value. If EDAs try to capture such
sub-problems, they need to prepar larger number of individuals. For example,
the BOA needs O(l1.55) if sub-functions are scaled uniformly but it requires O(l2)
if sub-functions are scaled exponentially [12]. On the other hand, linkage identi-
fication methods using fitness differences can identify linkages for sub-problems
which have small contribution, because the fitness differences for a sub-problem
are not affected by the other sub-problems. However, in contrast to EDAs, which
need no additional fitness evaluation for modeling, most linkage identification
methods need relatively large number of fitness evaluations, O(l2) where l is
string length, to check interdependency of a pair of loci even when a problem is
scaled uniformly.

For each locus i, the D5 calculates fitness difference by a perturbation at lo-
cus i, classifies strings according to the difference, and estimates classified strings
in order to detect dependency. Because the D5 selects sub-population accord-
ing to fitness difference (Fig.2 right), even a sub-problem having only a small
contribution can be captured. Although it needs additional fitness evaluations
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1. initialize population with n strings
2. for each locus i

a) calculate fitness difference dfi(sp) by a perturbation at locus i in string
sp (p = 1, 2, · · · , n)

b) classify strings according to their fitness differences into sub-
populations (see Fig. 4 for detail)

c) estimate sub-populations and construct linkage sets (see Fig. 5 for
detail)

Fig. 3. Overall Algorithm of linkage identification in the D5

to investigate fitness differences, required difference is by a single perturbation.
Therefore, the number of evaluations is quasi linear for l, which is considerably
less than that of linkage identifications O(l2) especially for large l.

In the followings, we show the detail of the algorithm and its mechanism.

2.1 The Algorithm of the D5

Fig. 3 shows the proposed algorithm. The algorithm consists of three parts :
(1) calculation of fitness differences, (2) classification of strings according to the
differences and (3) estimation of the classified strings.

After initializing population, following procedures are repeated for each locus
i : At first, locus i in each string sp is perturbed and then fitness difference for
the perturbation is calculated as follows:

dfi(sp) = f(sp) − f(sp
i ) (1)

In the above equation, sp
i is a string perturbed ( 0 → 1 or 1 → 0 ) at locus

i. Then, strings are classified into sub-populations according to the fitness dif-
ference dfi(sp). The classification method will be mentioned in subsection 2.2.
Finally, the sub-populations are estimated in order to detect loci which depend
on locus i. This stage will be mentioned in subsection 2.3.

2.2 Classification According to Fitness Differences

Fig.4 shows a classification method we employed. We employ a centroid linkage
method for classification. In this method, the centroid of a cluster is determined
by averaging dfi(sp) of all strings within that cluster. The distance between two
clusters is defined as the distance between the centroids of the clusters. The pair
of clusters having the smallest distance are merged until a termination criteria —
number of clusters becomes smaller than the pre-defined threshold and distance
dfi(c) reaches to the above upper bound of distance — is satisfied.

Although this simple classification is enough for quasi-decomposable problem,
as future work, other classification methods should be investigated for complex
problem.
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1. initialize classes
one class cp includes one string sp and fitness difference of the class dfi(cp)
is set to dfi(sp)

2. estimate |dfi(cp) − dfi(cp)| for all pair of class (cp, cq) and merge the pair
with smallest difference.

3. update dfi(c) of new class to average dfi of all strings in the class
4. repeat 2 and 3 until a termination criteria are met.

Fig. 4. Classification Algorithm

1. for each sub-population p classified by the Classification Algorithm
a) initialize set of loci v1 = {1, 2, · · · , i − 1, i + 1, · · · , l} and v2 = {i}
b) while |v2| < K, where K is pre-defined problem complexity

i. calculate a entropy Ej = E(v2 ∪ {j}) for all locus j ∈ v1

ii. h = arg minj∈v1
Ej

iii. update v1 = v1 − {h} and v2 = v2 ∪ {h}
c) vp = v2 and Ep = E(v2)

2. select vp with the smallest Ep as the linkage set for locus i

Fig. 5. Construct Linkage Set

2.3 Construction of Linkage Sets

Fig. 5 is the algorithm to construct a linkage set for locus i. First, the set is
initialized as {i}. The locus which gives the smallest entropy joining the linkage
set is merged repeatedly until the size of linkage set exceeds pre-defined problem
complexity k. The entropy measure is used by Harik [3] and defined as

E(v2) = −
2|v2|∑

x=1

px log2 px (2)

where n is population size px is the appearance ratio of each schema x and 2|v2|

is the number of all possible schema defined by v2. In our algorithm, if px = 0,
log2 px is set to 0 for convenience. The reason why we can identify a linkage set
by finding v2 which gives the smallest E(v2) is described in the next subsection.

This procedure is applied for all sub-populations except those including small
number of strings. This is because that estimation of distribution from small
samples has risk of unreliable result. Finally the linkage set giving the smallest
entropy is selected as linkage set vi of locus i from linkage sets obtained on each
sub-population. If there are several sub-populations which give the smallest en-
tropy, then the one with larger sub-population size seems to have more reliability
because small sub-populations are likely to have unexpected bias.
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Table 1. Order 3
sub-problem

Table 2. s, f(s), f(s1)
and df1

Table 3. Strings classified ac-
cording to df1

2.4 Mechanism of the D5

In EDAs, estimated sub-population must have the information about problem
structure to detect dependency of variables. In other words, the estimated sub-
population must have a biased and determinate distribution. It is clear that
there is not any kind of information in a completely random population i.e. an
initial population and that no model can be constructed from such population.
Most EDAs select strings with relatively high fitness value to obtain the infor-
mation from them. However, as mentioned before, the methods have difficulties
in capturing sub-problems having a small fitness contribution.

In this part, we describe how the D5 obtains such biased sub-populations by
classification according to fitness differences. First, we give an explanation using
a concrete problem and then we show a formal exposition.

Table. 1 shows an order 3 deceptive problem which was used as an opponent
of the messy GA [2]. Consider a fitness function composed of sum of the 3
sub-functions. For example, we obtain strings with f(s), f(s1) and df1 for the
problem as shown in Table. 2. In this table, f(s1) is a fitness value of a string
perturbed at locus 1 and df1 = f(s1) − f(s) is a fitness difference. These strings
are classified as in Table. 3. It is clear that loci which depend on locus 1 (locus 2
and 3) have same gene values. In contrast to the case of locus 2 and 3, loci which
does not compose a same sub-function with the 1-st locus distribute randomly.
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In sub-population having df1 = 30, linkage set {1, 2, 3} has only schema 011
and E({1, 2, 3}) should be zero. On the other hand, linkage set {1, 4, 5} has
schemata 010, 001, 010 and E({1, 2, 3}) should be relatively large. Therefore the
algorithm evaluate that a relationship between locus 1, 2, and 3 take place more
likely than a relationship between locus 1, 4, and 5.

In the followings we give a further explantion using some equations.
We assume that problem is composed as sum of completely separable sub-

problems like

f(s) =
∑

v∈V

fv(s). (3)

where v is a set of loci which compose a sub-problem fv(s) and V is a set
of linkage groups (a set of a set of loci). This class of problems are known as
additively decomposable functions.

Let v̂ the sub-problem including locus i then equation (3) is represented as

f(s) = fv̂(s) +
∑

v �=v̂,v∈V

fv(s). (4)

It is clear that fv(s) is calculated independently of locus i if v does not include
i. Therefore the following equation is true :

∑

v �=v̂,v∈V

fv(s) =
∑

v �=v̂,v∈V

fv(si) (5)

where si is a string having same values as s in all loci except locus i. From the
above equation, dfi(s) is represented as follows :

dfi(s) = f(s) − f(si)

= [fv̂(s) +
∑

v �=v̂,v∈V

fv(s)] − [fv̂(si) +
∑

v �=v̂,v∈V

fv(si)]

= fv̂(s) − fv̂(si). (6)

Accordingly, it is said that dfi(s) is defined independently of loci j ∈/ v̂ and
depend only on loci j ∈ v̂.

The entropy E(v2) in equation (2) is a measure of uncertainty of distribution
of schemata. Therefore, if schemata defined by v2 distribute randomly, E(v2)
takes large value. Because dfi(s) dose not depend on loci j ∈/ v̂, such loci dis-
tribute randomly, such linkage sets give large E(v2) over sub-population classified
according to dfi(s). On the other hand, if the distribution of schemata is biased,
E(v2) becomes small. Since the sub-population is classified by dfi(s) and dfi(s)
is depend on loci j ∈ v̂, a correct linkage set v̂ can identify by finding v2 which
minimize E(v2).
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3 Experiments

In this section, we give simulation results of the D5 in comparison to the LINC
and its variations. Experiments in subsection 3.1 and 3.2 examine efficiency of
the algorithms for a problem composed of uniformly scaled trap sub-problems
and a problem composed of exponentially scaled trap sub-problems respectively.
An experiment in subsection 3.3 investigates the ability of the algorithms for
a problem having not only interdependencies in sub-functions but overall com-
plexity.

3.1 Uniformly Scaled 5-Bits Trap Function

First test function is defined as the sum of uniformly scaled 5-bit trap sub-
function defined as equations (7) and (8).

If accurate problem structure is known, following optimization will be success.
Therefore, we examine how many evaluations of fitness function are needed to
obtain correct dependency for all loci. The numbers of evaluations for detecting
accurate problem structure are recorded for various string lengths (i.e. problem
size). Since all test functions we use are composed of sum of sub-functions having
deceptiveness, it is considered that when loci in the same sub-function with locus
i’s are detected perfectly for all locus i in 10 independent runs, problem structure
is obtained accurately.

f(s) =
m∑

i=1

trap5(s5·i, · · · , s5·i+4) (7)

trap5(s5·i, · · · , s5·i+4) =
{

5 if u = 5
4 − u otherwise (8)



254 M. Tsuji, M. Munetomo, and K. Akama

where u is the number of ones in each 5 bit substring s5·i, · · · , s5·i+4 and m is
the number of sub-functions. In our experiment, we try various m and change
overall string length l = 5 × m

Fig.6 shows the number of evaluations on the 5-bit trap function. It is clear
that the number of evaluations required by the D5 is far smaller than the LINC
and exceeds O(l) slightly.

3.2 Exponentially Scaled 5-Bits Trap Function

Second test function is the sum of 5-bit trap sub-function having exponentially
increasing contribution.

f(s) =
m∑

i=1

2itrap5(s5·i, · · · , s5·i+4) (9)

where trap5(s5·i, · · · , s5·i+4) is a same function as (8). Contribution of i-th sub-
function is controlled by 2i−1.

In this function, a solution which has high fitness values in 1, 2, · · · , m − 1
-th sub-functions and low fitness value in m-th sub-function can not be modeled
due to inequality

∑m−1
i=1 2i < 2m. Therefore, EDAs should model each sub-

function one by one from the one having large contribution to the one having
small contribution and can not get accurate model for sub-function having small
contribution immediately. As mentioned in section 2, the BOA needs O(l1.55)
if sub-functions are scaled uniformly but it requires O(l2) if sub-functions are
scaled exponentially.

Fig.7 shows the number of fitness evaluations for the uniformly scaled func-
tion and the exponentially scaled function by the D5. The solid line shows result
for the uniformly scaled function and the dotted line shows result for the expo-
nentially scaled function. It is said that the D5 can solve a problem which has
exponentially scaled sub-problems as efficient as a problem which has uniformly
scaled sub-problems because two lines overlap each other considerably. This is be-
cause fitness differences for perturbations of loci are not affected by nonuniform
scaling. Note that also the LINC can perform on the uniformly scaled function
as on the exponentially scaled function but it needs O(l2) fitness evaluations for
both functions.

3.3 Overlapped Function

In this experiment, we use the sum of trap sub-functions, but having overall
nonlinear interdependency as follow:

f(s) = [
10∑

i=1

trap5(s5·i, · · · , s5·i+4)]m (10)
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Table 4. Average and Standard Deviation of Accuracy of linkage identification

m D5-800 D5-1600 LIEM-32 LIEM-64 LIEM2-32 LIEM2-64
Avg. S.D. Avg. S.D. Avg. S.D. Avg. S.D. Avg. S.D. Avg. S.D.

1 1.00 0.00 1.00 0.00 0.95 0.04 1.00 0.00 0.95 0.06 1.00 0.00
2 0.99 0.01 1.00 0.00 0.96 0.04 1.00 0.00 0.94 0.05 1.00 0.00
3 0.96 0.03 1.00 0.00 0.94 0.04 1.00 0.00 0.95 0.04 1.00 0.00
4 0.86 0.05 0.94 0.05 0.79 0.08 0.98 0.03 0.95 0.04 1.00 0.00
5 0.68 0.06 0.88 0.06 0.31 0.11 0.49 0.07 0.95 0.05 1.00 0.00

where m = 1, 2, · · · , 5 and trap5(s5·i, · · · , s5·i+4) is an equation (8). This function
was proposed to ensure the performance of the LIEM and the LIEM2, which are
expansion of the LINC for overlapped function [9, 10]. Problem length is fixed
to 5 × 10 = 50 and a strength of overall complexity m is varied from 1 to 5. The
accuracy of linkage identification is measured and is compared with the LIEM
and the LIEM2.

In the D5, we employ fixed population size n = 800 and n = 1, 600 for all
m = 1, · · · , 5 therefore the number of fitness evaluations is 40, 800 and 81, 600
respectively. In the classification phase, sub-populations are merged until the
number of clusters becomes 8. In the estimation phase, sub-populations which
have 8 or lower strings are ignored due to their unreliability. The population
size for the LIEM and the LIEM2 is n = 32 and n = 64. The numbers of fitness
evaluations are 40, 832 for n = 32 and 81, 664 for n = 64.

Table. 4 shows the ratio of correct linkage groups in 10 independent runs
for equation (10). The numbers following the name of the algorithms are their
population size. As mentioned before, the number of fitness evaluations of D5

using 800 strings is roughly the same as the number of the LIEM and the LIEM2

using 32 strings. For the problem of m = 1, 2, 3, the D5-800 can perform best for
the number of fitness evaluations. However, when m = 4, 5, the LIEM2-32 gives
the best result of the three algorithms. The D5-800 can perform better than the
LIEM-32 for these problems.

The number of fitness evaluations of the D5 using 1,600 strings is also roughly
same as the number of the LIEM and the LIEM2 using 64 strings. All of the
three can identify all linkage sets accurately for the problem of m = 1, 2, 3. For
the problem of m = 4, the D5-1600 and the LIEM-64 also give high score but
they can not archive complete identification like the LIEM2-64. For the problem
of m = 5, the accuracy of the LIEM-64 decreases considerably and it is lower
than the D5-1600 and even the D5-800.

Because of relatively small problem size, the number of evaluations of all
algorithms is set equivalent. However, it is clear from the experiments in sub-
sections 3.1 and 3.2 that the number of evaluation of the D5 is smaller than the
LIEM and the LIEM2 for large problem size.

The horizontal axes of the histograms in Fig. 8 – 10 show normalized fitness
difference by the perturbation at a locus and the vertical axes is the number
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Fig. 10. Histogram of m = 5 problem

of strings showing the fitness difference. It is clear that the function of m = 1
has the character that is easy to be classified. The both sides of strings have
sub-solution of (8) of u = 5 and sub-solution of u = 4 which became u = 5 by
1-bit perturbation respectively. On the other hand, it seems that the function of
m = 5 has the character that is difficult to be classified.

It is said that although the D5 uses only quasi linear fitness evaluations, it
can solve problem having weak overall complexity.

4 Discussion and Conclusion

In this paper, we propose a novel approach to detect dependency between loci.
The proposed D5 estimates dependencies of loci based on sub-populations clas-
sified according to fitness differences by perturbation at each locus. The fitness
difference depends only on loci constructing a same sub-problem as a perturbed
locus. Therefore the classified sub-populations has biased distribution in such
loci and and and dependencies of a problem are obtained by estimating the
sub-populations.

The D5 is hinted from two existing method (1) Linkage Identification Meth-
ods and (2) Estimation of Distribution Algorithms (EDAs). It can detect de-
pendencies with smaller number of fitness evaluations than that of the linkage
identifications, because it needs only O(l) perturbations while linkage identifica-
tions need O(l2) perturbations for each pair of loci. In addition, the D5 can solve
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problems consisting of exponentially scaled sub-functions, which is difficult for
the EDAs and is applicable to problems having weak overall complexity.

The D5 can be located in the place where existing methods can not perform
well. For future work, more powerful classification method should be investigated
for complex problems.

References

1. Jeremy S. De Bonet, Jr. Charles L. Isbell, and Paul Viola. MIMIC: Finding optima
by estimating probability densities. Advances in Neural Information Processing
Systems, 9:424–430, 1997.

2. David E. Goldberg, Bradley Korb, and Kalyanmoy Deb. Messy genetic algorithms:
Motivation, analysis, and first results. Complex Systems, 3(5):415–444, 1989.

3. Georges Harik. Linkage learning via probabilistic modeling in the ECGA. Technical
Report IlliGAL Report No.99010, University of Illinois at Urbana-Champaign,
Urbana, IL, 1999.

4. Georges Harik, Fernando G. Lobo, and David E. Goldberg. The compact genetic
algorithm. Proceedings of the 1998 IEEE Conference on Evolutionary Computa-
tion, pages 523–528, 1998.

5. Robert B. Heckendorn and Alden H. Wright. Efficient linkage discovery by lim-
ited probing. In Proceedings of the 2003 Genetic and Evolutionary Computation
Conference, pages 1003–1014. Morgan Kaufmann Publishers, 12–16 July 2003.

6. John H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, 1975.

7. Hillol Kargupta. The gene expression messy genetic algorithm. In International
Conference on Evolutionary Computation, pages 814–819. Springer Verlag, 9 1996.

8. Heinz Mühlenbein and Thilo Mahnig. FDA – a scalable evolutionary algorithm for
the optimization of additively decomposed functions. Evolutionary Computation,
7(4):353–376, 1999.

9. Masaharu Munetomo. Linkage identification based on epistasis measures to realize
efficient genetic algorithms. In Proceedings of the 2002 Congress on Evolutionary
Computation, pages 445–452, 2002.

10. Masaharu Munetomo. Linkage identification with epistasis measure considering
monotonicity conditions. In Proceedings of the 4th Asia-Pacific Conference on
Simulated Evolution and Learning, 2002.

11. Masaharu Munetomo and David E. Goldberg. Identifying linkage groups by
nonlinearity/non-monotonicity detection. In Proceedings of the 1999 Genetic and
Evolutionary Computation Conference, 1999.

12. Martin Pelikan. Bayesian Optimization Algorithm: From Single Level to Hierarchy.
Doctroral dessertation, University of Illionis at Urbana-Champaign, 2002.

13. Martin Pelikan, David E. Goldberg, and Erick Cantú-Paz. BOA: The bayesian op-
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